Bregman Projections over Submodular Base Polytopes

نویسندگان

  • Swati Gupta
  • Michel Goemans
  • Patrick Jaillet
چکیده

A well-known computational bottleneck in various first order methods like mirror descent is that of computing a certain Bregman projection. We give a novel algorithm, INC-FIX, for computing these projections under separable mirror maps and more generally for minimizing separable convex functions over submodular base polytopes. For minimizing divergences onto cardinality-based submodular base polytopes defined on ground set E, we prove an O(|E|) running time under any uniformly separable mirror map. This matches the running time of [9, 13] for projections under KL-divergence and squared Euclidean distance, recovers an algorithm from [16] for computing projections over the simplex.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Submodular-Bregman and the Lovász-Bregman Divergences with Applications: Extended Version

We introduce a class of discrete divergences on sets (equivalently binary vectors)that we call the submodular-Bregman divergences. We consider two kinds ofsubmodular Bregman divergence, defined either from tight modular upper or tightmodular lower bounds of a submodular function. We show that the properties ofthese divergences are analogous to the (standard continuous) Bregman d...

متن کامل

Submodular-Bregman and the Lovász-Bregman Divergences with Applications

We introduce a class of discrete divergences on sets (equivalently binary vectors) that we call the submodular-Bregman divergences. We consider two kinds, defined either from tight modular upper or tight modular lower bounds of a submodular function. We show that the properties of these divergences are analogous to the (standard continuous) Bregman divergence. We demonstrate how they generalize...

متن کامل

Solving Combinatorial Games using Products, Projections and Lexicographically Optimal Bases

In order to find Nash-equilibria for two-player zero-sum games where each player plays combinatorial objects like spanning trees, matchings etc, we consider two online learning algorithms: the online mirror descent (OMD) algorithm and the multiplicative weights update (MWU) algorithm. The OMD algorithm requires the computation of a certain Bregman projection, that has closed form solutions for ...

متن کامل

Efficient Bregman Projections onto the Permutahedron and Related Polytopes

The problem of projecting onto the permutahedron PH(c)—the convex hull of all permutations of a fixed vector c—under a uniformly separable Bregman divergence is shown to be reducible to the Isotonic Optimization problem. This allows us to employ known fast algorithms to improve on several recent results on Bregman projections onto permutahedra. In addition, we present a new algorithm MergeAndPo...

متن کامل

Unsupervised Submodular Rank Aggregation on Score-based Permutations

Unsupervised rank aggregation on score-based permutations, which is widely used in many applications, has not been deeply explored yet. This work studies the use of submodular optimization for rank aggregation on score-based permutations in an unsupervised way. Specifically, we propose an unsupervised approach based on the Lovasz Bregman divergence for setting up linear structured convex and ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2016